Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

1,1'-Bis(3-methoxybenzyl)-3,3'-methylenediimidazolium dibromide

Hon Man Lee* and Pei Ling Chiu

National Changhua University of Education, Department of Chemistry, Changhua 50058, Taiwan

Correspondence e-mail: leehm@cc.ncue.edu.tw

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.029$
$w R$ factor $=0.077$
Data-to-parameter ratio $=19.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

The structure of the title compound, $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{2+} \cdot 2 \mathrm{Br}^{-}$, has been determined at 294 K . The central C atom of the cation is located on a crystallographic twofold rotation axis. Nonclassical intermolecular hydrogen bonds of the types C $\mathrm{H} \cdots \mathrm{Br}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ are present in the crystal structure.

Comment

N -Heterocyclic carbene (NHC) ligands have been shown to have wide applicability in coordination chemistry and catalysis. Current research efforts are devoted to the discovery of efficient metal NHC catalysts. NHC ligands are generally accessible via the deprotonation of imidazolium salts. The preparation of chelating bis(NHC) ligands are also receiving much attention, since they can provide extra air- and moisture stability for the metal centers. For example, chelating palladium complexes of bis(NHC) carbenes have been found to be efficient catalysts in $\mathrm{C}-\mathrm{C}$ coupling reactions (Herrmann et al., 1998; Zhang \& Trudell, 2000). Several bis(imidazolium) halides, as bis(NHC) ligand precursors, have been synthesized and structurally characterized by us (Lee et al., 2004). We report here the structure of $1,1^{\prime}$-bis(3-methoxybenzyl)-3, 3^{\prime} methylenediimidazolium dibromide, (I). The structure of the 4-methoxy isomer, (II), has been reported previously (Lee et al., 2004).

(I)

The title compound, (I), crystallizes in the monoclinic space group $C 2 / c$ with one-half cation and one bromide anion in the asymmetric unit. The central C atom of the cation is located on a crystallographic twofold rotation axis, parallel to the b axis (Fig. 1) The dihedral angle between the two methylene-linked

Figure 1
The structure of (I), showing 50% displacement ellipsoids for non-H atoms. [Symmetry code: (i) $-x, y, \frac{1}{2}-z$.]

Received 7 July 2004 Accepted 16 July 2004 Online 24 July 2004
imidazole rings is 78.02 (7) ${ }^{\circ}$. The molecular dimensions of (I) are similar to those in (II).

Non-classical hydrogen bonds exist, involving the methoxy groups of adjacent molecules (Table 1), such that the structure of (I) consists of chains of bis(imidazolium) cations running along the [100] direction. These chains are linked by C$\mathrm{H} \cdots \mathrm{Br}$ intermolecular hydrogen bonds (Fig. 2).

Experimental

The title compound was prepared according to the literature procedure of Lee et al. (2004). Suitable crystals were obtained by slow diffusion of diethyl ether into a dimethylformamide solution of the compound at room temperature.

Crystal data

$\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{2+} .2 \mathrm{Br}^{-}$
$M_{r}=549.29$
Monoclinic, $C 2 / c$
$a=37.557$ (5) A
$b=5.3553$ (6) \AA
$c=12.3209(15) \AA$
$\beta=107.412$ (4) ${ }^{\circ}$
$V=2364.6(5) \AA^{3}$
$Z=4$
$D_{x}=1.543 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 786 reflections
$\theta=3.5-26.8^{\circ}$
$\mu=3.46 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Block, colorless
$0.35 \times 0.20 \times 0.15 \mathrm{~mm}$

Data collection

Bruker SMART 1000
diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) $T_{\text {min }}=0.359, T_{\text {max }}=0.594$
7332 measured reflections

Refinement

Refinement on F^{2}
2782 independent reflections
2167 reflections with $I>2 \sigma$
$R_{\text {int }}=0.025$
$\theta_{\text {max }}=28.0^{\circ}$
$h=-41 \rightarrow 49$
$k=-7 \rightarrow 6$
$l=-16 \rightarrow 16$

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0404 P)^{2}\right. \\
&+1.0229 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.51 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.22 \mathrm{e} \mathrm{~A}^{-3}
\end{aligned}
$$

$w R\left(F^{2}\right)=0.077$
$S=1.00$
2782 reflections
141 parameters
H-atom parameters constrained

Figure 2
A view of the packing of (I), approximately along the c axis. Hydrogen bonds are indicated by dashed lines.

All H atoms were positioned geometrically and refined in the riding-model approximation, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms and $1.2 U_{\text {eq }}(\mathrm{C})$ for all other H atoms. $\mathrm{C}-\mathrm{H}$ distances are in the range 0.93-0.97 A.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

We are grateful to the National Science Council of Taiwan for financial support (grant NSC 92-2113-M-018-005).

References

Bruker (2001). SMART (Version 5.054) and SAINT (Version 6.28a). Bruker AXS Inc., Madison, Wisconsin, USA.
Herrmann, W. A., Reisinger, C.-P. \& Spiegler, M. (1998). J. Organomet. Chem. 557, 93-96.
Lee, H. M., Lu, C. Y., Chen, C. Y., Chen, W. L., Lin, H. C., Chiu, P. L. \& Cheng, P. Y. (2004). Tetrahedron, 60, 5807-5825.

Sheldrick, G. M. (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2002). SADABS. Version 2.04. University of Göttingen, Germany.
Zhang, C. \& Trudell, M. L. (2000). Tetrahedron Lett. 41, 595-598.

